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APPLICATION OF THE REGULARIZATION METHOD TO DETERMINATION OF 

MULTILAYER STRATA PARAMETERS 

M. Kh. Khairullin UDC 532.546 

The problem of determining the collector properties of a multilayered petroleum stratum 
is among the class of inverse problems of underground hydromechanics; it is incorrectly for- 
mulated and nonlinear [I, 2]. Questions of the existence and uniqueness of the solution of 
this problem in the case of radial filtration in the presence of overflows through weakly 
permeable strata and infiltration were studied in [3]. The problem of determining the col- 
lector properties of a monostratum on the basis of the A. N, Tikhonov regularization method 
was considered in [4]. The present paper is its extension to the case of a multilayer stra- 
tum in the presence of overflows through weakly permeable connectors. 

i. The majority of petroleum deposits has a laminar configuration due to features 
of the cumulative settling process. If the ratio of the permeability coefficients of two 
adjacent seams is less than i0 -a then the Myatiev-Girinskii scheme is applicable [i, 2]. We 
assume known the formulation of the direct problem in formulating the inverse problem. Ac- 
cording to the Myatiev-Girinskii scheme the problem to determine the pressure fields Pl = 
p1(x, y) and P2 = P2( x, Y) ina stratum with nonpermeable roof and floor, separated by a 
weakly permeable connector reduces under separate exploitation, to solving a system of par- 

tial differential equations in a multiconnected domain F with boundaries aD = F + ~ F k (F~ 
k=l 

are circles of radius r s ~- 0.i m and centers at the points 7k) 

Lips+ (o(p~ P2) = O, L x p ~  :-div(cr~grad Pl), ( 1. 1 ) 

L2P2+ c~ P t ) =  O, L~p2~ - -d iv (%grad  p2), 

where oi, H i (i = I, 2) is the hydroconductivity coefficient and thickness of well-permeated 
seams, w = o0/H02, o0, H 0 is the hydroconductivity coefficient and thickness of the weakly 
permeable connector, with the boundary conditions 

~ ds = q~z, ,r~ = O, Ph {r = O, k = ! ,  2, l = t ,  2 . . . . .  m, (1 .2 )  
r l 

The s e c o n d  o f  t h e  c o n d i t i o n s  ( 1 . 2 )  means  t h a t  t h e  p r e s s u r e  on t h e  c o n t o u r  o f  e a c h  w e l l  i s  c o n -  
s t a n t .  

In operator form the boundary value problem (i.I) and (1.2) can be written in the form 

Lp = 0 ,  Mp = Q ,  Np = 0 ,  Pl r  = 0 .  

( L~ + coE --  o)E ) 
Here P --~ (Pl, P2); L= \ _oE L 2 q2 oE ; M----- {mkz}, N---- {n~z } are 2 x m matrices with elements 

mhz = ~k~7 n nhz =~n r t (k= 1,2, l= i, 2 .... ~ m); Q = {qhz} is the matrix of the debits. 
t 

r I 

The inverse problem is to find the quantSties o0, ol, 02 . Its initial data are the given 
debits qks the values of the face pressure Pm =Ph!rt (k ~ i, 2, l = 1,2 ..... m, m/>2) and the 
pressure functions on the boundary of the filtration domain. This inverse problem generates 
a certain implicitly given nonlinear operator 
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Ao = P* ( 1 . 3 )  

(6 =(o0, ~ 02), P * =  {Pkz} i s  t h e  m a t r i x  o f  t h e  f a c e  p r e s s u r e s ) .  The m a t r i x  P* i s  o r d i n a r i l y  
known i n e x a c t l y :  t ]P*- -P~*[[~  5 ([]'lf i s  t h e  norm in  t h e  E u l c i d e a n  space  R 2m, and 6' i s  t h e  
e r r o r  in  measurement ] .  S o l u t i o n  of  t h e  o p e r a t o r  e q u a t i o n  ( 1 . 3 )  w i t h  t h e  a p p r o x i m a t e  r i g h t  
s i d e  i s  r e a l i z e d  on t h e  b a s i s  o f  m i n i m i z i n g  t h e  smooth ing  f u n c t i o n a l  [5-7]  

M a ( a ) :  []Aa - -  P~*llZ§ ~z~(o), ( 1 . 4 )  
2 

0 2. a(5) is the regularization parameter that agrees with the observa- where fl(g)----E (gi--oi) ,a = 
i=0 

tion error. 

Construction of an iteration process to minimize the smoothing functional (1.4) is per- 
formed by the scheme proposed in [6, p. 83]. Successive approximations o n are constructed 
in this manner: in the neighborhood of o n for a fixed value of the regularization parameter 

= ~n a nonlinear parameter Ao is represented in the form 

A~ ---- A o " +  A.'(o")(~ ~")+ O(ll~ -- o~11) 

(A~'(on)(~- o n) is the Frechet differential], then the functional 

M=" (~) = H A~ + A~ (~") (~ -- ~")= p~ II , + =,~ (0) 

becomes quadratic and its extremal is found from the Euler equation. 

2. An explicit expression of the Frechet differential can be obtained by methods of 
perturbation theory [8]. Let o = 8 + 60 (60 is a perturbation of the vector o), ~ = (Pl, P2) 
is the solution of the boundary value problem 

N ; = 0 ,  
( [  and 1~ a r e  o p e r a t o r s  o b t a i n e d  from L and M by r e p l a c i n g  c by ~) .  

L e t  u s  c o n s i d e r  t h e  v e c t o r  f u n c t i o n  pj = (Plj, P2~) (i = i ,  2, ] = i ,  2, -.., m), t h a t  a r e  s o l u -  
t i o n s  o f  t h e  boundary  v a l u e  problems 

Lpj = O; ( 2 . 1 )  

Mpj  E~j, Npj  O, ~ = ~ P~lr '= 0, ( 2 . 2 )  

where E-~ is a 2 x m matrix for which the element at the intersection of the i-th row and the ~J 

j-th column equals one while the remaining elements equal zero. 

We call the boundary value problems (2.1) and (2.2) conjugate. It can be shown that 

= § (2.3) 
k:l h = l  

Let us define the scalar product of the functions a = a(x, y), b = b(x, y) as 

(a, b) ~ a (x, ~) b (x, ~) & d~ 
D 

and the vector functions f = (f~, f2), g = (g~, g=) 

<1, g> =([:,  g : ) +  (/~, g2). 
The following equalities hold 

<Lp, ~~ p~ > = (SLp, p~ ~ ) + (Lp, ~~p~ >= 0, i = ~, 2 ( 2 . 4 )  

(6L = L - L). Is is easy to see that 

(pl,  (p2, -- Pzj) + 

(L2p2, P2J) + ~ ~i ~ (P2, P25) -- ~ (Pl, P~j), i = i ,  2 (~o = "~o/H~). (2.5) 

Applying the third Green's formula [9] to the component (LIPl, ~l Plj) and using (1.2), (2.2), 
and (2.3), we obtain 

O pld 
( lPlj, Pl) 2 p l j~ ;  ol * ol-~-~--ds + 

h=l Fk k~ pk 
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o s s  
+ p~6(r 1 ds = ( lPlj, P~) ~~ - -  p~hqx~ + p n  + pl~6~r~ ds 

( *  ~ ) Pli = P~ [rj, Pl~h = P~9 Ir~ �9 A n a l o g o u s l y  we f i n d  

(2.6) 

m 
= ( . p ~ ,  p , , )  - -  + d s  �9 =xP~uq~h p2~o ~-~- 

P2j [r~ �9 The quantities P,jh, P,j~, P~j~ have the meaning of mutual influence coefficients. 
The following equalities are valid 

pljk ~1 = P*~, P~s~ ~2 ( 2  8) =p~, ] , k = l , 2  . . . . .  m. 

By using the boundary conditions (2.2) it is sufficient to represent the difference p~--p~ 
in the form 

/=I Fl l /=1 "Pl /=1  

and then to use the third Green's formula and (2.1) to prove (2.8). The second of equations 
(2.8) is proved analogously. 

Substituting (2.6) and (2.7) into (2.5) and applying (2.3) and (2.8), we obtain 

k = l  ' k = l  1- h 

Using ( 2 . 1 )  and ( 2 . 9 ) ,  we f i n d  from ( 2 . 4 )  

<~Lp, p j> - j -  Plj--Pxj "J- ~' I PlJ~o'i ~ ds --J- ~ .f plj~(~ 2 ~-d8 = O. 
h=l Fk k = l  Pk 

Now remarking that 

we have 

p . )  + - p., p.j) + PlJ) + 
8L,=r -L 

(SLlp~,b~) + pajocrl Tgds + (6L2p2,p~j) + p~jo~r,-us + 
- h = l  r h  

Pz, Ply) + (P2 --  P,, P~j)] = - -  (Plj = Plj).  

(2.9)  

Analogous relationships are also true for i = 2. There follows from these relationships and 
the first Green's formula 

(6~1 grad pl, grad p~.> + <6~2 grad p2, grad ~j>  + (6ao/H~)[(pl_ p,, 
Plj) + (P2 - -  Pl, P=j)] (Paj ~* = , .. = - -  - - P l j ) ,  i = t ,  2, ] I 2, . , m .  ( 2 . 1 0 )  

The e q u a l i t i e s  ( 2 . 1 0 )  s e t  f o r  us  a c o n n e c t i o n  be tween  t h e  changes  in  t h e  h y d r o c o n d u c -  
t i v i t y  c o e f f i c i e n t  and t h e  changes  of  t h e  f a c e  p r e s s u r e .  R e p l a c i n g  P i  by P i  in  ( 2 . 1 0 ) ,  and 

assuming  Aij = <6~ 1 grad Pl,~ grad ~ j )  + <6~2 grad 72, gradpisj> ~-(6%/H~)[(p l - -  P2,~ ~iplj) + (P2 ~ ~i --p.p~j)],i= 
i, 2, j = i, 2,...,m, we obtain a representation of the Frechet differential 

= ::: .5 
3. Let us examine the results of a numerical experiment. A petroluem stratum is ex- 

ploited by three walls: the permeability coefficients and thickness of the seams are: k I = 
0.7 D, H l = 10 m, k 2 = 0.35 D, H 2 = 8 m, k 0 = 0.0001 D, H 0 = i m, the fluid viscosity is 
U = 1 cP, ~i=kiHi/~t (i =0, i~2),O={(x,y):O~x,y~JOOOm}. The well coordinates and their 
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d e b i t s  a r e  71 = (300, 300), V2 = (500, 500), ?3 = (700, 7 0 0 ) , q n =  q21= i60  m 3 / d a y ,  qz2 = q22 = 200 ma/  
d a y ,  q13 = q23 = 240 m ~ / d a y .  To o b t a i n  t h e  n u m e r i c a l  s o l u t i o n  o f  t h e  p r o b l e m  ( 1 . 1 )  a n d  ( 1 . 2 ) ,  
f i n i t e  d i f f e r e n c e s  a r e  u s e d ,  t h e  w e l l  d i m e n s i o n s  a r e  o r d i n a r i l y  n e g l e c t e d  by  c o n s i d e r i n g  i t  a 
p o i n t  s o u r c e  w i t h  p o w e r  e q u a l  t o  t h e  m a s s  f l o w  r a t e  o f  a r e a l  w e l l  [ 1 0 ] .  C o m p u t a t i o n s  w e r e  
p e r f o r m e d  f o r  an  h = 100 m g r i d  s p a c i n g  i n  b o t h  v a r i a b l e s .  A t  e a c h  s t e p  o f  t h e  i t e r a t i o n  

2 3  

p r o c e s s ,  t h e  r e s i d u a l  in  t h e  f a c e  p r e s s u r e s  llAp'll E ,n = ~p~j --p~) , n=O,i ..... is calculated, 
i=o j=z 

2 

where p~ are values of the calculated face pressures, and [l~--o"]i ~= ~ (6,--~)', n = 0, I ..... 

If IIAPnli~:~, then gn is an approximate solution of the problem (1.3). The regularization 
parameter is selected by means of the residual criterion. 

Computation showed that the convergence of the iteration process depends on the selec- 
tion of the initial approximation of the permeability coefficient of the connector and is 
independent of the initialapproximation of the permeability coefficient of the quite perme- 
able seams. In practice the selection of the initial approximation of the connector perme- 
ability coefficient is realized as follows. For different values of the connector permeabil- 
ity coefficient, 5-6 iterations are made, then that value is taken as the approximate value 
of the connector permeability coefficient for which the residual in the face pressures de- 
creases most rapidly. Graphs of the functions logllApnl} 2, logllo - onll as a function of the 
number of iterations n are presented in Figs. i and 2 for a different choice of the initial 
connector approximation, the curves 1-4 for k~ = 0.0005, 0.00015, 0.00011, 0.0001 D, k~ = 
0.5 D, k~ = 0.5 D. The permeability coefficients of the quite permeable seams are deter- 
mined to i0 -s accuracy (curve 4) when the connector permeability coefficient is known, i.e., 
to the same accuracy as in [4]. If the connector permeability is known with error, then 
the accuracy of finding the permeability coefficients of the quite permeable seams depends 
on the accuracy of giving the connector permeability (curves 1-3). 

The quantities qij and p$. are measured with i-3% accuracy in practice Upon their in- lJ 
sertion in the initial data of the problem the maximal error in determining the permeability 
coefficient in quite permeable seams is 4%, where the connector permeability in these com- 
putations was taken with a 10% error. Computations performed on model problems show that 
the proposed algorithm permits effective determination of the collector properties of pe- 
troleum strata. 
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POSSIBILITIES FOR CONSTRUCTING A UNIFIED FAILURE THEORY 

A. G. Ivanov UDC 539.4 

The abundance of existing and newly developed materials and the various conditions for 
using them has led to creation of numerous, as a rule, semiempirical theories, criteria, 
concepts of failure, each of which holds for an experimentally studied range of change in 
parameters. These special theories together with previous experience of strength analysis 
have made it possible for a certain time to be limited to them. However, further development 
of technology in the direction of creating large unique objects intended for operating under 
conditions of intense dynamic loads, the impossibility in a number of cases of carrying out 
full-scale tests for these objects in order to explain their actual strength margins, and also 
continuing cases of unpredicted catastrophic failure for certain objects built in accordance 
with existing strength standards, require not so much development and creation of new fail- 
ure criteria, as the requirement of finding a single physically substantiated approach to the 
problem as a whole, if only at the level of phenomenology without considering the fine details 
of failure phenomena and complicating circumstances. This theory with a capacity to some ex- 
tent or other to combine special criteria (concepts) for failure should be built up taking 
account of the generally accepted fact, i.e., failure calculated for the whole in parts, is 
completion of work in proportion to the fracturesurface. Therefore, work and energy spe- 
cific for a unit of surface should act as criterial values. In fact, use of an energy ap, 
proach with local consideration of conditions of a changeover of a crack to unsteady growth 
explains the vigorous development and success in understanding many details and features of 
brittle failure achieved by fracture mechanics (FM). Attempts to use FM for describing other 
forms of failure have been fruitful. However, it is not in a state of combining and de- 
scribing all forms of it [i, 2]. 

Recently in works by the author with co-workers, and also by other domestic and over- 
seas researchers a study has been carried out of failure for dynamically loaded shells. On 
the one hand these studies have made it possible to reveal a number of new effects not found 
in FM, and on the other hand, based on energy balance applied to the whole object in question 
or specified parts of it, to describe these phenomena and understand their physical nature. 
In future we call this the integral approach (IA) in contrast to the local approach used in 
FM. The integral approach makes it possible to look at the problem as a whole and to find 
a scheme for constructing an overall theory for failure. Previously such an attempt using 
the IA was made in [3]. Studies performed subsequently using the IA [3-14] provide a basis 
for its fruitfulness and necessity of developing it further. 

We consider failure of a material cube with edge L stretched by forces oL 2 at two op- 
posite faces. The rest of the faces are free. We also assume a piecewise linear rule for 
material deformation and it consists of an elastic region where 

= ~E ( 1 )  

up to o = Oy, where Oy is yield stress (and elastic limit) for the material and region for 
plastic strain (o > Oy): 
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